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Abstract

Accurate evaluation of the performance of buildings
participating in Demand Response (DR) programs is
critical to the adoption and improvement of these pro-
grams. Typically, we calculate load sheds during DR
events by comparing observed electric demand against
counterfactual predictions made using statistical base-
line models. Many baseline models exist and these
models can produce different shed calculations. More-
over, modelers implementing the same baseline model
can make different modeling implementation choices,
which may affect shed estimates. In this work, using
real data, we analyze the effect of different modeling
implementation choices on shed predictions. We fo-
cused on five issues: weather data source, resolution
of data, methods for determining when buildings are
occupied, methods for aligning building data with tem-
perature data, and methods for power outage filtering.
Results indicate sensitivity to the weather data source
and data filtration methods as well as an immediate
potential for automation of methods to choose build-
ing occupied modes.

1 Introduction

Buildings are becoming increasingly important com-
ponents of power system operations. With continu-
ing Smart Grid development, there is a potential for
electric loads to become dynamic resources that are
as equally controllable as electricity generators [1].
In traditional demand response (DR) programs, sys-
tem operators and utilities can achieve system-wide
demand reductions by providing financial incentives
for buildings to reduce their demand during time pe-
riods when the grid is stressed. In dynamic pricing
programs, operators incentivize behavior by increas-
ing electricity prices during periods of grid stress, en-
couraging building operators to shed or shift load to
an off-peak time.

DR programs are evaluated by their impact and
cost effectiveness. Accurate estimations can signifi-
cantly change these values. Therefore, a key to the
success of DR programs is the accurate estimation
of demand sheds achieved by program participants.
These estimations are typically made with baseline
models that estimate what building load would have
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been if a DR event had not been called. These es-
timates are compared with actual measurements of
building data to estimate the size of sheds, or load
curtailments. These baseline models are used for a
variety of tasks including Measurement and Verifica-
tion (M&V), improving DR program design and op-
eration, and, in some cases, settling business trans-
actions surrounding DR events.
There are many examples of baseline models in

the energy efficiency literature [2, 3, 4, 5, 6, 7, 8]
and the DR literature [9, 10, 11, 12]. Some of
these studies compare estimates produced by differ-
ent baseline models. However, shed estimates from
the same model can differ if the model is imple-
mented by two different building modelers. This
is because specific algorithm implementation choices
can effect model results. For example, different ap-
proaches to interpreting and filtering bad data, differ-
ent methods for calculating model parameters, and
different sources of model inputs can all affect fi-
nal baseline predictions. This issue is of importance
because as individual modeling frameworks become
more widely used, the effects of implementation dif-
ferences could cause differences in interpretation of
DR performance. Therefore, it is important to under-
stand which sorts of differences have the most effect
on results.
In this work, we use a linear regression model re-

lating time-of-week, outdoor air temperature, and
whether or not the building is in an occupied mode
to building demand as described in [13]. We re-
implemented this model on a new platform and de-
scribe lessons learned through validation. Then we
look at five variations on choices made in the origi-
nal implementation: (1) different sources of weather
data, comparing the National Climactic Data Center
data used in the original analysis, which is heavily
curated but at a lower time-resolution and usually
measured further from the sites, to Weather Under-
ground data, which is less curated, higher resolution,
and measured closer to the sites; (2) different resolu-
tion of building data, comparing the predicted sheds
using 15-, 30-, and 60- minute resolved data; (3) dif-
ferent approaches for determining whether the build-
ing was in an occupied or unoccupied mode, with the
transition times either estimated manually/visually

or with an algorithm that automatically calculates
these transition times based on a heuristic; (4) dif-
ferent methods for aligning building electric demand
data with temperature data; and (5) the choice of
a model parameter that determines sensititivity to
identifying power outages in the building data.

The rest of this paper is organized as follows. Sec-
tion 2 describes the data we used in this analysis.
In Section 3, we describe the baseline model as well
as its validation against the original implementation.
Section 4 discusses the details of the modeling varia-
tions we examined in this work. Finally, in Sections 5
and 6, we discuss and conclude the work.

2 Data

For the base analysis, we use 15-minute interval whole
building electric load data from 38 large commercial
buildings and industrial facilities in the Pacific Gas
and Electric Company’s (PG&E) Automated Criti-
cal Peak Pricing (CPP) Program between 2007 and
2009. In the CPP program, on up to 12 days per year
electricity prices were raised to three times the peak
price between 12 pm and 3 pm in a moderate price
period, and raised to five times peak price in a high
priced period between 3 pm and 6 pm. These ‘DR
events’ were announced day-ahead.
In the base analysis, we used weather data obtained

from the National Climactic Data Center (NCDC)
[14], a division of the National Oceanic and Atmo-
spheric Administration (NOAA). Hourly outdoor air
temperature (OAT) was downloaded for the near-
est facility to each site. Linear interpolation was
used to approximate OAT at each 15 minute interval.
Weather data were removed for times when the inter-
val between interpolants was greater than six hours.
In some cases, where exceptionally large amounts of
data were missing, temperature files were patched us-
ing OAT from the second closest NOAA weather sta-
tion.

To investigate the effect of weather data source on
shed estimates, we obtained OAT data from Weather
Underground [15]. Weather Underground is a private
site that collects data from Personal Weather Sta-
tions (PWS) operated by private individuals and or-
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ganizations. Stations undergo a one-time calibration,
but are generally not guaranteed to be monitored
by meteorological experts. However, time resolution
tends to be much higher and and for many locations,
typically occurring in high density areas, multiple
measurements of OAT can typically be found closer
than those used by NOAA. Additionally, in general,
these weather stations had better up-time and so the
data were less spotty than the NOAA data.
Because Weather Underground data are collected

from a variety of sources, specifics of data format may
vary. Each weather station collects a variety of mea-
surements; however OAT is measured at essentially
all stations. Weather temperature data measurement
rate is dependent on the specific weather station be-
ing queried, however 5- or 15-minute weather data
are typical.

3 Baseline Model

In this section, we briefly describe the baseline model
in [13] that we used in this analysis. We build sep-
arate models for each facility in each year (facility-
year) since buildings change year to year. As in [13],
for each facility-year, we use five months (May 1 –
Sept 30) of load and temperature data for each model.
The model assumes demand is a function of time of

week, and assigns a regression coefficient αi to each
15-minute interval from Monday through Friday, ti
where i = 1 · · · 480. The model also assumes that de-
mand, when the building is occupied, is a piecewise
linear and continuous function of OAT. To model this
effect, each observed temperature is divided into six
temperature components, Tc,j with j = 1 · · · 6, as-
sociated with six equal sized temperature bins. A
regression coefficient βj , is assigned to each bin. Tc,j

is computed with the following algorithm:

1. Let BK for k = 1 · · · 5 be the interior bounds of
the temperature intervals.

2. If T > B1 then Tc,1 = B1. Otherwise, Tc,1 =
T and Tc,m = 0 for m = 2 · · · 6 and algorithm
ended.

3. For n = 2 · · · 4, if T > Bn then Tc,n = Bn−Bn−1.

Otherwise, Tc,n = T − Bn−1 and Tc,m = 0 for
m = (n+ 1) · · · 6 and algorithm is ended.

4. If T > B5 then Tc,5 = B5−B4 and Tc,6 = T−B5.

Estimated occupied mode demand, D̂o, is calcu-
lated as:

D̂o(ti, T (ti)) = αi +

6
∑

j=1

βjTc,j(ti) (1)

A different temperature effect is modeled during
unoccupied hours of the building. During building
unoccupied mode temperature is modeled using only
one regression coefficient, βu which is multiplied by
outdoor temperature T . Estimated unoccupied mode
demand, D̂u, is calculated as:

D̂u(ti, T (ti)) = αi + βuT (ti) (2)

Ordinary Least Squares (OLS) is used to estimate
the parameters α, β, and βu. It produces unbiased re-
gression parameters. Because of autocorrelation and
heteroscedasticity, we do not use the standard errors
associated with the regression parameters.
The general procedure to build the model is as fol-

lows. We take building demand data and filter out
weekends, holidays, and days on which buildings par-
ticipated in DR events. We filter for power outages
by looking for days where minimum power consump-
tion was less than 50% of the average minimum daily
power consumption during the summer. For any day
that falls below the threshold, we flag the entire day’s
data as having a power outage and remove it from the
analysis.
Next, we take the outdoor temperature data and

linearly interpolate it to 15 minutes prior to the time
stamp on the building data. We do this because for
15-minute interval building data, each measurement
represents the mean demand by that building over
the previous 15 minute interval. After interpolation,
we finally filter out all times where the temperature
values were computed using interpolants greater than
6 hours apart. This represents the final, cleaned set
of data used to build the model.
Next, since buildings use electricity differently

when they are occupied than when they are unoccu-
pied, we determine transitions between unoccupied
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and occupied mode (usually in the morning) and oc-
cupied model and unoccupied mode (usually in the
evening). In the original analysis these start and
end occupied mode transition times were determined
through visual inspection of the load shape data. An
algorithm for doing this is presented in Section 4.
The observed temperature range is divided into 6

regions according to the procedure described above,
so that for a given occupied temperature we can de-
compose it into the contributions for each range. For
example, if the minimum observed temperature is
40◦F (4.4◦C) and the maximum is 100◦F (37.7◦C),
then the minimum bin starts at 40◦F and each of
the 6 bins has width 10◦F. If we decompose a tem-
perature of 65◦F, then Tc,1 = 50◦F, Tc,2 = 10◦F,
Tc,3 = 5◦, and the remaining temperature compo-
nents are 0◦F.
The regression equations (Eqns. 1 and 2) can be

written in matrix form:

y = Ax + ǫ (3)

where x is the parameter vector, y is the output
vector (electric demand), ǫ is the error, and A is
composed of time of week indicator variables, oc-
cupied mode temperatures components, and unoc-
cupied mode temperatures. For each building time
measurement and temperature that has not been fil-
tered away, we generate a 487-column row vector.
The first 480 columns correspond to the time of week
indicator variables which are 0 or 1 depending on
the 15-minute interval of the Monday through Friday
work week; columns 481-486 correspond to the occu-
pied mode temperature components; and column 487
is the unoccupied mode temperature. After building
the A matrix by generating each of its rows, we solve
for the parameter vector x using an OLS estimator:

x̂ = (ATA)−1AT y (4)

In practice this is calculated using the implementa-
tion of the software package being used to implement
the model.
To make a prediction for a given time-of-week and

temperature, we generate the corresponding 487 col-
umn row vector, v, and predict:

ypredict = v · x (5)

To estimate average demand shed over a period, we
make a prediction for each of the relevant times of
week, subtract the observed demand, and take the
mean.

Model Validation

The model described in the previous section was orig-
inally implemented in MATLAB. To do the analysis
described in this paper, we reimplemented the model
in Python and validated this implementation against
the results of the original implementation. While
our primary focus was simply to verify that the new
implementation performed correctly, the validation
process also helped us gain a sense for the variety
of important modeling implementation choices that
modelers face, and the implications of those choices.
These choices ranged from the technical, such as
rounding choices that encouraged floating point dis-
agreements between estimates made on different com-
puter systems, to the more pragmatic, such as a
strong influence of the effect of thresholds to filter-
ing algorithms whose differences caused the model to
be built on different subsets of data. This experience
helped us pick the set of modeling choices to investi-
gate, described in the next section. Additionally, it
left us with a number of lessons learned, described in
Section 5.
We validated the Python implementation via a two

stage process. We first looked at five facility-years
worth of data in detail, performing an end-to-end
comparison between the two implementations, iden-
tifying and classifying as many discrepancies as could
be found. After the detailed validation, a statistical
analysis was completed on the full set of data with
the purpose of comparing the population shed esti-
mates from one implementation to the other. At this
point, outliers were identified visually and where ap-
propriate issues were tracked down until the authors
were satisfied the two implementations behaved sub-
stantially identically.
Figure 1 shows the comparison between the esti-

mates of the first analysis and the second analysis.
Each point represents a comparison between a DR
shed (one for the moderate price period and one for
the high price period for each facility-year) calculated
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Figure 1: FINAL RESULT OF VALIDATION.

using the first compared with the second implemen-
tation.

The remaining discrepancies were caused by a va-
riety of minor factors. Because of a choice to round
interpolated OAT data, temperature values used by
identical algorithms on two different machines occa-
sionally differed (details described in Section 5). Ad-
ditionally, the boundaries on the weather filter were
different in the two implementations, resulting in a
small number of weather points being used by one
implementation and not the other. Finally, a slightly
different power outage filtering routine was used in
the second implementation; sites on which the two
filters differed were removed from the analysis, so as
not to bias results. Ultimately, 49 facility-years worth
of data (out of the original 87 facility-years of data)
were used to perform the analyses in the subsequent
sections. In total, each analysis includes 1176 shed
estimates.

4 Modeling Choices Investi-
gated

The goal of our analysis was to gain a general sense
of the relative importance of different potential mod-
eling implementation choices focusing on five types

of choices: choice of weather data, choice of building
load data resolution, choice of method to determine
occupied/unoccupied mode transition times, choice
of alignment of OAT data with building demand data,
and choice of power outage filter. This analysis does
not attempt to be comprehensive for each modeling
choice, but instead seeks to test plausible real world
choices, to get a better sense of what the contentious
choices might be and where future efforts in model
building might be directed.
Therefore, for each type of modeling implementa-

tion choice investigated, we looked at two or three
different choices that could be made and the effect
of those choices on the resulting analysis when com-
pared with the base analysis.
For each choice, we calculate the sheds generated

using the validated baseline model (producing the
‘base analysis’) and then generate the sheds using
the model with variations (‘variant analysis’). We
calculate a variety of statistics on these predictions
to gain a sense of the effect of the two choices on shed
prediction. For each shed predicted in each analysis,
we calculate the mean. Additionally, we look at the
differences between the base and variant sheds, cal-
culated as (shedvariant − shedbase), and report the
mean and variance between the differences. Assum-
ing the differences are unbiased between the original
and mean analysis, we expect the mean difference
between sheds to be near zero. We calculate the
absolute mean difference for each shed, calculating
|shedvariant − shedbase|, and take the mean and vari-
ance of these values. We also calculate the relative
difference in sheds, as:

∣

∣

∣

∣

shedvariant − shedbase

shedbase

∣

∣

∣

∣

We calculate the mean and variance of the relative
differences as well. Statistics are summarized in
Tab. 1.

Weather Data Source

To get a sense for the effect of choice of weather
sources, we compared the base analysis which uses
NOAA OAT data against a variant analysis which
used Weather Underground OAT.
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Figure 2: COMPARISON OF BASE ANALYSIS
TO VARIANT ANALYSIS USING WEATHER UN-
DERGROUND DATA.

For each facility, we used its zip code to look up
the closest weather stations using the Weather Un-
derground website and downloaded data from the two
sites with relevant data. When these two stations dif-
fered in distance to the zip code by more than 50%,
we used data from the closest site directly. Other-
wise, we averaged the two data streams when both
were available and directly used data from one of the
two sites when only one was available. For several
sites, we were not able to easily obtain good weather
data from Weather Underground. We removed these
sites from both the base and modified analysis for
this specific comparison in order to generate good
statistics.
The results of the comparison between NOAA and

Weather Underground are shown in Fig. 2. Shed
statistics are summarized in Tab. 1.

Building Data Resolution

Building models may be built using various resolu-
tions of load and weather data. This choice may be
made either through a choice of sensor configuration
or it may be made at model building time, by down-
sampling.
To get a sense of the effect of building demand data
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Figure 3: COMPARISON OF BASE ANALY-
SIS TO VARIANT ANALYSES USING 30- AND
60-MINUTE INTERVAL BUILDING DEMAND
DATA.
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Figure 4: COMPARISON OF BASE ANALYSIS TO
VARIANT ANALYSIS USING AN AUTOMATED
OCCUPIED MODE DETECTION ALGORITHM.
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Table 1: COMPARISON OF STATISTICS BETWEEN BASE AND VARIANT ANALYSES.

Weather
Under-
ground
data

30-
minute
interval
data

60-
minute
interval
data

Auto-
mated
occupied
mode
detec-
tion

Shift
data

alignment

No
Power
Outage
Filter

Sensi-
tive

Power
Outage
Filter

Mean Shed using Base Analysis (kW) -32.4 -34.5 -34.5 -34.5 -34.5 -34.5 -34.5
Mean Shed using Variant Analysis (kW) -32.0 -34.4 -33.7 -34.0 -33.1 -30.3 2.5
Mean Difference Between Sheds (kW) -0.4 -0.1 -0.9 -0.6 -1.4 -4.3 9.3
Mean Absolute Shed Differenc (kW) 14.6 1.3 3.3 1.0 3.2 4.6 0.7
Mean Relative Shed Difference (kW) 1.4 0.2 0.4 0.1 0.3 0.9 344.2
Variability Between Sheds (kW2) 546.1 4.9 21.1 5.7 21.1 904.9 263.9
Variability of Absolute Shed Diff. (kW2) 332.0 3.1 11.1 5.1 12.6 901.7 263.9
Variability of Relative Shed Diff. (kW2) 546.1 4.9 21.1 5.7 21.1 904.9 344.2
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Figure 5: COMPARISON OF BASE ANALYSIS
TO VARIANT ANALYSIS USING DIFFERENT
ALIGNMENT OF OAT AND DEMAND DATA.
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resolution on shed estimates, we took the original 15-
minute interval data and decreased the resolution to
30- and 60-minute interval data.
For each time series used in this analysis, we cal-

culated 30- and 60-minute resolution data by finding
each 30- or 60-minute period worth of data and taking
the mean of those values. Care was taken to ensure
the intervals were day-aligned, meaning that the first
interval of the day always represented demand during
the interval from midnight to either 00:30 or 01:00.
If one or more data points were missing, we skipped

over that point in the algorithm, e.g., if a 30-minute
interval only had zero or one data point, or the 60-
minute interval contained zero, one, two, or three
data points, they were skipped over and not included
during the analysis. This had a minimal effect since
sites typically had fewer than 10 hours of data thrown
out during this process.
Once completed, we ran the analysis to generate

shed predictions the 30- and 60-minute resolution
data. The results of the 15- vs. 30-minute analy-
sis and the 15- vs -60 analyses are plotted in Fig. 3
and statistics are summarized in Tab. 1.

Occupied/Unoccupied Mode Transi-
tions

In the model, the occupied mode of the building is
an implicit variable because temperature effects are
modeled differently depending on the mode, accord-
ing to either Eqn. 1 or 2.
In the original algorithm, occupied periods were

determined manually by visual inspection of the data.
This process has all the advantages and disadvan-
tages of having a human in the loop. This can be
compared with an algorithmic approach to determin-
ing occupied and unoccupied period transition times.
To gain a sense of the effect of this modeling choice

on the outcome to the analysis, we created a basic al-
gorithm to automatically detect the occupied mode
start and end times. The algorithm looks at each day
of the analysis and calculates the 2.5th and 97.5th
percentiles, called D2.5 and D97.5 of load. These per-
centiles were chosen based on work in [16] which used
them in order to minimize the effect of demand out-
liers skewing the analysis. For each day, the transi-

tion time from unoccupied to occupied mode (‘start
time’), typically in the morning, was determined by
calculating the first time the building transitioned
above 0.1×(D97.5−D2.5)+D2.5. The transition from
occupied to unoccupied mode (‘end time’) was calcu-
lated as the final time during the day the building
transitioned below this threshold. The mean of each
facility-year’s start-times and end-times were used to
determine when each building was in occupied and
unoccupied modes for the purposes of the model.

The results comparing the base analysis to the vari-
ant analysis with an automated occupied mode detec-
tion algorithm is shown in Fig. 4. Shed statistics are
summarized in Tab. 1.

Alignment of OAT Data with Building
Demand Data

To build the model, each demand measurement is
associated with an OAT measurement. In the orig-
inal work, OATs were assigned to the beginning of
the interval over which the building demand mea-
surements were taken. For example, with 15-minute
interval data, the demand measurement at 3:00pm
was assigned an OAT at 2:45pm. We tested the ef-
fect of assigning OAT data based on the end of the
building demand interval measurement, i.e., match-
ing 3pm to 3pm, a simpler choice. The results are
shown in Fig. 5. Shed statistics are summarized in
Tab. 1.

Sensitivity of Power Outage Filter

In the model, a day is flagged as being a power outage
day and filtered if its daily minimum demand falls be-
low some threshold percentage of the mean daily min-
imum demand for the dataset. In the original work,
this threshold was set to 50%. To test the effects of
permitting borderline data to enter the analysis, we
ran the analysis using no power filter whatsoever. We
also tested the effects of running with a stronger filter
that flags days with a measurement below a 75% of
average daily minimum threshold. The results are in
Fig. 6 and the shed statistics are reported in Tab. 1.
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5 Discussion

Effect of Modeling Choices on Shed Es-
timation

We find a strong sensitivity on shed estimation to
the source of weather data. Especially in areas
with strong micro-climate effects, it may be worth
spending time and investment in obtaining good
weather data, including installing additional sensors
as needed. Where this is not possible, it may be
worth acquiring multiple sources of weather data and
running the analysis with on different weather data,
to gain a sense of the differences in shed estimates. It
is clear that the impact of real work weather data on
baseline model predictions is a topic needing further
investigation.

Investigating the choice of building data resolution,
we found a moderate sensitivity towards using coarser
60-minute building interval data compared with 15-
minute data, and a relatively slight effect when using
30-minute over 15-minute data. For this data set, it
appears that discrepancies do not increase substan-
tially as data set is coarsened, at least over this range.
This suggests that if there are compelling reasons to
do so, it is likely acceptable to use a coarser grained
building data set.

We also determine high levels of agreement be-
tween manually determining building occupancy
mode thresholds and automatically detecting it us-
ing a very simple algorithm. While we make no claim
that this algorithm is optimal for this task, even a ba-
sic approach agrees very well with manually choosing
the times. From this, we conclude that automatic
detection is beneficial, providing very similar perfor-
mance while eliminating the need for a human in-the-
loop, speeding up processing time.

We find there are only minor effects associated
with demand and OAT data alignment, at least for
plus/minus 15-minutes. Although offsetting OATs
by 15 minutes against the building demand data may
be more accurate, this subtle complexity could be a
potential source of invisible disagreements between
tools in the future. This result suggests that it may
be possible to opt for a simpler approach without
noticeably affecting results, especially given the ap-

parent relative sensitivity to the weather data.
We find large differences caused by filtering power

outages. Each day of marginal data has an outsized
effect on the ultimate estimation of model parame-
ters, and therefore the choice of this parameter mat-
ters greatly to the overall analysis. This has mul-
tiple implications. First, it is likely worth investing
resources into developing good algorithms to detect
power outages. It may also be worth obtaining in-
formation on power outages directly, rather that es-
timating them, as disagreements in this area may
lead to outsized effects. Further investigation is war-
ranted.

Lessons Learned through Algorithm
Validation

During the course of validating the model, we learned
several practical lessons that may be of use to other
implementers. Depending on the situation, this could
either save development time for future research or
applications, or it could even help prevent discrepan-
cies in code that gets used in the field, as in many
real-world examples replicating someone else’s analy-
sis could be difficult, as much data is protected from
being shared by non-disclosure agreements (NDAs).
Generally, we found this process to be incredibly

helpful in better understanding performance of the
model. Several modeling implementation issues were
discovered during this process.
The first was the discovery of a choice to round

interpolated temperatures. This choice was signifi-
cant, because it caused discrepancies due to numer-
ical floating point calculations in the rounding pro-
cess across different machines. One machine would
linearly interpolate a value ending in .5 and would
round up; another machine would calculate a value
of .49999... and round down. These individual dis-
crepancies appeared to occur arbitrarily. While we
were not able to discern a significant difference in
model prediction caused by this choice, from a soft-
ware development perspective, this choice confers lit-
tle added benefit and increases the probability of dis-
crepancies. For instance, comparing intermediate re-
sults when such a choice has been made could make
things more difficult than necessary.
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The second discovery was the significance of the
algorithms used to filter out bad building and tem-
perature data. Many of the discrepancies we tracked
had to do with specifics as to how these filters were
applied. In most cases, we were surprised by the large
effect of these filtering parameters. While we did not
investigate these choices directly in this work, we sug-
gest testing various settings against one another, to
characterize the effect of including or not including
marginal data on analyses.
Finally, during the validation, we also discovered

that there were several unexpected pitfalls caused by
external software purporting to do the same thing but
actually not. For instance, between the MATLAB
and Python computer environments, the default vari-
ance calculation had a different interpretation as ei-
ther sample or population variance. Implementation
of the two regress functions treated NaNs very differ-
ently. Both these caused initial discrepancies. Espe-
cially where detailed analyses are not available with
which to validate one tool against another, we rec-
ommend testing external computer routines against
known inputs, to ensure that the semantics are as
expected.

6 Conclusion

We have investigated the sensitivity DR performance
results to different modeling implementation choices.
We find that shed estimates are sensitive to weather
data and therefore acquisition of good weather data
should be a key focus of any baseline analysis. This
may have implications for whether it is appropriate
to install local weather monitoring or not. In areas
where local climate varies noticeably, even around the
shell of a building, it may be worthwhile to spend
added resources finding optimal weather data.

We find shed estimates are not sensitive to building
demand resolution. Depending on the application, it
may be an acceptable trade off to use lower resolved
building data, at least up to hourly, as other factors
warrant.

We find that automated approaches for determin-
ing building occupied mode work essentially as well as
manual approaches for this data set. Ultimately, for

large data sets, automated approaches are necessary
in order to increase the throughput of these analy-
ses. We also find that short time-scale (plus/minus
15-minute) alignment of OAT and demand data has
a relatively minor effect on model prediction. It may
be advisable to standardize on simpler approaches.
Finally, we find that the choices surrounding power
outage filtration and, by extension, other data filtra-
tion schemes that flag and remove marginal data have
a large influence on predictions. It may be worth ex-
pending extra effort to ensure data quality so as to
avoid having to heuristically estimate such important
information.
We also suggest defining a robust validation

method on these algorithms, especially due to the
fact that certain comparisons may be difficult or im-
possible given data access requirements. Therefore,
it is of particular importance to understand the sub-
tle differences between implementations of common
algorithms such as the variance and regress imple-
mentations. If is is not possible to fully validate in
an end-to-end manner, we determine that at mini-
mum software should be tested on a common data
set to ensure a common language between software
tools.
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